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Second Order in the Gradients Effects in a 
Dilute Binary Mixture 1 

F. J. Uribe 2 and L. S. Garcia-Colin 2'3 

A study is made to compute relevant transport properties for a dilute binary 
mixture of inert gases to second order in the gradients without explicitly solving 
the Boltzmann equation to that order. This is done with the Chapman-Enskog 
method, seeking to express such quantities in terms of the solution to first order. 
The pressure tensor and the velocity of diffusion are two quantities which allow 
for this computation. In the particular case when the sum of the particle den- 
sities of the mixture (hA, nB) is constant, one finds that in order to keep the 
Chapman-Enskog method mathematically consistent, it is necessary that the 
divergence of the mass velocity be position independent. Finally, we consider 
the case of swarms of charged particles and study the prediction of the method 
in the Navier-Stokes and Burnett regimes for diffusion phenomena. In the latter 
case, the results are restricted to electrons in a gas. 

KEY WORDS: Boltzmann equation; Burnett regime; Chapman-Enskog 
method; diffusion; mobility; pressure tensor; swarms. 

1. I N T R O D U C T I O N  

In  this work ,  we s tudy  di f fus ion p h e n o m e n a  in s w a r m s  of  c h a r g e d  par t i c les  

by us ing  the  C h a p m a n - E n s k o g  m e t h o d  to  so lve  the  B o l t z m a n n  e q u a t i o n  

for  a b i n a r y  mix tu re .  W e  ana lyze  the  s o l u t i o n  to first a n d  s e c o n d  o r d e r  in 

the  K n u s d e n  p a r a m e t e r  ( N a v i e r - S t o k e s  a n d  B u r n e t t  reg imes) .  

A s s u m i n g  tha t  the  e x p e r i m e n t a l  t e m p e r a t u r e  a n d  p res su re  can  be  iden-  

t if ied wi th  the  t h e o r e t i c a l  exp res s ions  g iven  for  these  quan t i t i e s  in the  case  
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of a binary mixture [1 ], we study the conservation equation for the num- 
ber density of charged particles (na) when the pressure and temperature are 
held constant. This is a common restriction in experiments made on 
swarms of charged particles [2, 3], and as a consequence of the iden- 
tification mentioned above, the total number density (n) turns out to be a 
constant. 

In the second section, we consider the Boltzmann equation for a dilute 
binary mixture for swarms. We also discuss the conservation equation for 
the number density of charged particles with a constant total density. 

The third section contains the main part of this work. It is shown how 
the relevant fluxes in a binary mixture to second order in the gradients can 
be expressed in terms of the first order in the gradient's term for the dis- 
tribution function in the Chapman-Enskog method. The results are applied 
both to computing the pressure tensor and to the diffusion velocity. In the 
latter case we derive a nonlinear partial differential equation for n A whose 
structure and properties are discussed for a one-dimensional flow of elec- 
trons using the Lorentz approximation [ 1 ]. This is an oversimplification of 
a realistic swarm but allows for some quantitative predictions. A more 
detailed discussion of these features will be published elsewhere [4]. 

In the fourth and final section, we obtain the mobility to first and 
second order, using the conventional identity for the drift velocity [5]. 

2. THE BOLTZMANN EQUATION FOR THE 
BINARY MIXTURE 

If f i  denotes the one-body distribution function for the ith species 
( i = A , B ) ,  the evolution equations for the f i 's  in the case of elastic 
collisions are given by 

•fA 
Ot t- CA" V e f  a + FA " V e A f  a = --JAA - -  JAB 

0f B 
~t l- CB" V e f  B + fiB " V e B f  B = - - J B B  - -  J B A  

(1) 

where --JAA represents the collisions between the A species, --JAB the 
collisions between the A and the B species, etc. The form of this term is 
given in the literature [6]. Here d; represents the molecular velocity of the 
ith species, and if, the external force. 

In the case of swarms of charged particles in which the density of 
charged particles (A species) is extremely low compared with that of the 
neutral species (B), it is possible to justify neglecting the term JAA corn- 
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pared with JAB and also of JAB compared with JBB" Hence Eqs. (1) reduce 
to 

•fA 
at ~- CA" V f f  A -t-/~A "VeAf  A = --JAB 

af ~ 
0--7 + 6B " g e f  B + fib " V eB f  B = --JBB 

(2) 

In this system the equation for fB is uncoupled, and given fB, the 
equation for fA is linear in fA. Usually fB is taken as a global Maxwellian 
[7]. 

2.1. The Conservation Equation for the Number of Particles 

As is well known, the existence of the collision invariants implies the 
existence of conservation equations. For the number of particles of the A 
and B species, these are [8] 

an~ F-V. (n~(~i)) = O, i = A , B  (3) 
~3t 

where (~(~)  > = (1/n~) ~ 0(Ci)f  ~ d~ i. 
Equations (3) immediately lead to 

0H 

Thus, for n constant it follows that V' c6=0, where oJ= 1/n Z~=A r l i (Ci)  is 
the number velocity. Using this fact, Eq. (3) for nA can be rewritten as [-9] 

Ot = " (<(~A>-- (CB))  --eJ'VnA (4) 

where C'i= ci-Co is the peculiar velocity and c0 = (Z~=A P~(Ci)/P) is the 
mass velocity. Here p~ is the mass density of the ith species and p =  
PA+PB. 

3. S E C O N D  ORDER IN THE G R A D I E N T  EFFECTS 

In the following we use the Chapman-Cowling E1 ] notation and do 
not express the solution in terms of the parametric Enskog expansion 
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which is usually found in the literature [10]. The method is based on a 
series expansion for the distribution function of the form 

fi=fi(o)[1 _[. ~i(1).q_ ~i(2).~_ . . . ] ,  i = A ,  B 

where f ~(~ is the local Maxwellian and ~b i(~), ~b~(2),..., etc., are corrections to 
fi(o). The expansion parameter is usually taken to be the Knusden 
parameter for the system under study [1, 9, 10]. 

3.1. The Navier-Stokes Regime 

To first order in the expansion parameter, the distribution function is 
given by 

f(i) = fi(o)[1 + ~i(1)-] 

where the correction ~b e(1) has the form [11] 

~i(1) = z~i. V In T +  D i " d i -+- Bi:Vc 0 

Here, T is the temperature and di is given by 

~. = (nA/n) VnA + [nAnB(mB -- mA)/np ]V lnp  -- PAPB (ffA -- ff~) 
PP 

The equations satisfied by the tensors Bi = BiCiCi are 

f A ( ~  A = n2IA(BA) A- nA/'/BIAB(B A + BB) 
(5) 

f " ~ g ~ .  = n~,IB(kB) + nAnBI.A(~A + BB) 

Those for .4i and /)i are of no relevance for this paper and are given in 
Ref. 11. The form of the linear operators "I" has been considered elsewhere 
[12] and ~ =  (2kT/mA) -1/2 Ci. 

Taking ffA = (eA/mA)L', fib = 0 with eA the  charge of the A species, it 
can be shown that [1]  when the pressure and temperature are held con- 
stant, then 

F ('A'~ nAnBNB~~ E]  (6) 

where D is the diffusion coefficient. Substitution of Eq. (6) into Eq. (4) 
gives a nonlinear equation for hA, which in the case of swarms (nA/n ~ 1) 
reduces to 

OnA f . . neAD ) 
cSt = -- ~ - t-----7 g_  "VnA + D V2nA (7) 

We discuss this equation in Section 4. 
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3.2. The Burnett Regime 

To second order in the expansion parameter, f i  reads as f i =  
f/(~ +~b~(1)+~b~(2)]. It is possible to show that the equations for ~b ~(2) 
satisfy the following identities [4]: 

F A -{- JAA [fA(1)flA(l)] + JAB [fA(l~ eB(1) ] 

= --nZla [~b A(2)] _ nAnalAa [~b h(2) + ~b B(2) ] 
(8) 

F u -.}- JBB [fB(1)flB(1)] + JBA[fB(I~clA(1) ] 

= - n ~  IBB [q~ B~2~ ] -- nAnBIBAE~A(2) + Ck B(2) ] 
where 

Doeo) F i-c31fA(~ I -D~ F Fi " V e f  i(1) 
c~t Dt Dt J 

+ Ci. Vff (~)- (Ve, fi(1)C~):Veeo, i = A ,  B (9) 

In Eq. (9) the operators Ol/COt and Do/Dt are defined in Ref. 1. 
However, at this stage it is important to point out that in order that the 
Chapman-Enskog expansion is mathematically consistent for the case 
n = cte, V(V" e0) has to be equal to zero. The proof of this is given in 
Appendix A. This condition will be used later. 

Let us now consider the second-order contribution for the pressure 
t e n s o r  P(2): ~-]i=A,B mi l fi(~ ~i=A,B mi l fi(~176 
which in terms of the adimensional velocities c~= (2kT/mA)-m Ci, takes 
the form 

By substituting Eqs. (5) in Eq. (11), we obtain 

p ( 2 )  

- f ~bA(Z)[n2IA(BA) + nAn,IA,(BA + BB)] deA 
2kT 

+ f ~b"(2)[nZlB(Ba) + nAn,InA(BA + B, ) ]  des 

= n~[BA, ~b A(2) ] + nAns[BA + BB, ~bA(2) + ~ bB(2)] + nZ[Ba, ~b "(2)] 

(11) 

Using the symmetry properties of [ , ] and its definition, we have 
[] 3)(2) C 

n 2 
t- 

2 k T -  A 

+nAns f BslAB[~bA(2) + ~b u(2)] des + n 2 f BulB[~b B(2)] des (12) 
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If we multiply the first equation in (8) by BA and integrate over CA, 
then multiply the second equation by/~B and integrate over s we have, 
after summing the results and comparing with Eq. (11), 

[]3)(2) 
T, [ [ r ' + J l ' ) ]  B, (13) 

2kT-  i = A,B " 
where 

J(A 1) = JAA [fA(I~cA(1)] + JAB [fA(I~ClB(1) ] 

j(1) = JBUEfB(1)fBO)] + J.AE/B(1)fAO)] 

In an analogous manner one can show that [13] 

((~A) (2)- ((~B)(2' = -  1 { ~A fdciOi[Fi-~-J~l']} (14) 
H i ,B 

and for the heat flux it happens that 

Equations (13)-(15) contain the main results of this work, namely, the 
expression of the second-order contribution to the fluxes in terms of the 
first-order solutions. Since we are interested mainly in the diffusion proper- 
ties of swarms, we focus our attention on Eq. (14). 

Since/)i is odd in Cg it is necessary to consider only the odd parts of 
IF ;+  J~ 1)] in Eq. (14). Also, for swarms we have that / )a  =0  [see Eq. (2)], 
and therefore we need to evaluate only [F  A + J~A~)] ~ At constant pressure 
and temperature, F A is given by [ 13 ] 

2 // 0DA ~'~2 0DA ~ CA . aA 

q- DA CA" L Dt 

an-~ + PZ 062, / PA 

__ [(6A.CA)(CACA:VSo)(2pt~B'A + 2 OD'A~ 
\PA aC2A 062,/ 

+ 2ppA BA(ttA 6A :Vc~ ~- B~, 6 A �9 Vr*(C A C A :Vco) 1 (16) 

where A~, = --[fA~~ AA, D'A = -- fAm)DA, and Bk = 2fAm)Ba. 
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To evaluate /-A odd it is necessary to give the form of AA, DA, and BA. 
For the Lorentz approximation these quantities are given by [14] 

A A = ((~2 -- ~)/[n. ICAI v'a2"~(1)3J = 7'1/n. 

DA --n/[nAnB [CAI ,~(1)3 = (n/nan.) ?'2 (17) W 1 2  A 

B A = mA/[ 3nBk T ICAI ,~<2n _ 7'3/nB ' / ' 1 2  / 

where v-~2"~(;) are defined by Eq. (9.33,4) of Ref. 1, and the quantities 7j are 
functions of [ CA I and T. When the result of the substitution of Eq. (17) into 
Eq. (16) is used, it turns out that Eq. (14) can be written as 

((~A)~2) - (CB)(2)=  1 { 2 2 - n  -- -~ V" r  /nan.) I7V1 " dA 

+ (n2/nAn")W2"(D~176 Dt 

+ (n2/nA n3) ~1" (VnAV~ -t 
2m~eAn 

mAnB 
- - ~ . ( v % s  

2mBeAn 
+ - -  w3. (Wo. P) 

mAnB 

nA n22n 2 n ~} ~3" ( d A V ~  ~4" [V(Vco)] + (18) 

Here l~j, j = 1, 2, 3, are second-order tensors, and x;, l = 1, 2, 3, 4, fourth- 
order tensors; the general form of them is given below, a v represents the part 
corresponding to the collisions and its form is given in Appendix B. 

For the tensors i f /and x, we have 

lTv.=27rwj(ff+jj+fcfc), j = 1 , 2 , 3  
J 3 

4x 
~ , = ~  6,(3~f + f f j j  + ~f:f~ + qj~+ q q  

(19) 
+ fkfk + fkkf+ j j f f +  3jjjj+ j fkk + j f f j  

The integrals wj and 6; have been evaluated for a potential proportional to 
r-(V-1) (v/> 5), and their values for the Maxwell model (v = 5) are given in 
Appendix B. 
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In order to simplify the calculations we take the one-dimensional case 
as defined by the relations VnA = (OnA/~3Z)(Z, t)#, V?0 = (OCo/QZ)(Z, t f .  Then 
Eq. (18) reduces to 

[(CA>(2) <Ca>(2)] #= 1 [(n--~n~) #na n ] n  ~ cz--Z--+ nBnA SeE (20) 

To obtain Eq. (19) use was made of the relation V(V" do) = 0, a n d / ~ =  E#. 
31 and ~2 are given by 

~ 16 32 ~z6~ n _  
~- -~1~-  - -  7~Wl--~ ~W2"~'~ na "~ zc63 

32 ( mA `]3/2( m ,  ,]3/2 o- ] 

27 \2rckTJ \2rckTJ -~-T~72 K 

Z 2 = [ ~ w l m B -  ~-8rcW2mB ~ 32mB(~2_ 16rcw3mB 
pp 3 pp 45 m A np 9 np m A 

32~c63m a 32 o- ( m  A `]3/2( mB `]3/2m, ] 
+45 pfl + 2 - 7 - ~ \ 2 ~ )  \ 2 ~ J  p-'p ~)1~)2 rlrlAeAK 

(21) 

Here a is the gas viscosity and K = V .  do. The collision integrals 71 and 72 
are also given in Appendix B for the Maxwell model. 

From Eq. (20) it follows that 

t V"  ~. - -  B 1-<r  < C B > ( 2 ) l ,  = - - H ~ ' ~ ' I ~ z 2  q aZ aZ ~-E~z-z=2; 

(22) 

where ~* = { 1/na + [(ma -- mA)/p] } $2. Since (OSl/~3z) = [•l/na + 
(16/45)(rtKn61/n3)](Ona/OZ), we notice that the second term in Eq. (22) is 
nonlinear in OnA/OZ. However, for the case of swarms, we can make an 
estimation of this term with respect to the first one. We take E1/nB, the first 
coefficient of (OnA/dZ) 2, and compare it with ~l/n, the coefficient of the first 
term in Eq. (22). Then, if L is a characteristic length of the density 
variations, so that (Ong/OZ)~ng/L and (02nA/~3Z2)~nA/L 2, we have 
[Sln~ l(OnA/~3z)Z]/[Zl(~32nA/OZ2)] ~ na/n, and therefore the nonlinear term 
can be neglected. If we consider only the linear terms, then Eq. (21) can be 
written as 

B 1 21 __~_~_z2 + E2a (23) V. n (<C~>~2~_ <(?~>~2~3 = - n  az ) 
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where, in the case of swarms, 21 and )~2 a r e  given by 

I 16 4 16 32 

= _ T 

32 { mA ,~3/2[, mB ~3/2 o 1 

(24) 
22=KeAF16L --~- 8 32 62kT 16 w3kT 

"~ W l -~- 5 7"g, W 2 7 [ - -  7"C - -  p +'-~ mA +-~ ma 

16 32 O" (m A ~3/2( ~ 2 2 g k Z / ]  m B  ~3/2 ] 
+ -~7c63+~-~\2zckZ] ~1])2 

Taking fu)  in the Burnett approximation in Eq. (4) and using the 
results obtained to first order [Eq, (7)], we come to the conclusion that 
when Eq. (23) is taken into account, then 

~ - -  t ~ - F - -  + D -  (25) 
p n / 0z 0z 2 

is the equation satisfied by n A in the Burnett regime. Noting that, for the 
Maxwell model, (kT/K12) has dimensions of length -4 (see Appendix B) 
and using the expressions for the integrals given in Appendix B to evaluate 
21 and 22, one can check that Eq. (25) is dimensionally correct. 

4. T H E  M O B I L I T Y  

In the experiments on swarms of charged particles a very important 
quantity is the drift velocity (vd), which is usually considered constant 
[2, 3]. The mobility y is defined by the relation I7~ = yE and it is impor- 
tant to give a theoretical evaluation of y. In order to do this, it is necessary 
to find the theoretical velocity that can be identified with the drift velocity. 
We use the usual identification (see below) and assume that the neutral 
species is at rest with respect to the laboratory reference frame so that 
(eB) =0. 

With density gradients present besides an electric field, one would 
expect for the mean velocity of charged particles (((A)) ,  a relation of the 
type 

(cA) = alVnA + a2E (26) 

From (CA)= ( C A ) - - ( C B )  and Eq. (6), we see that this actually 
happens in the Navier Stokes regime. From Eq. (25) we note that the 
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mean velocity has a diffusion velocity (alVnA) and a part proportional to 
the electric field (0-2/~). The latter velocity is usually identified with the drift 
velocity, so that the transport coefficient 0- 2 is the mobility. In the Navier- 
Stokes regime we obtain for the mobility [see Eq. (6)] 

y = (eAD) / (kT)  

which is the well-known Einstein-Townsend relation [15 ]. 
In the Burnett regime and for swarms, we obtain for the mean velocity 

the following expression (see Eq. (20)]" 

- z+\kT E (27) 

Thus we have from Eq. (26) that the mobility in the Burnett regime is 
given by 

eAD 2 2 
Y -  k T  n 

If K C0 we see that the mobility is not given by the Einstein- 
Townsend relation. 

To find out what can be said about the diffusion coefficient, we turn 
our attention to Eqs. (7) and (25). Since the gas is considered at rest, we 
have [ ~ [ / [ ( S a ) l = n A l n ,  thus allowing us to neglect the term ~'VnA, 
which is very small in comparison to the terms proportional to /~'VnA. 
Then the expressions for OnA/Ot are 

On__._AA = __ nea__..DD ff~" VnA + DV2nA (28) 
~3t p 

in the Navier-Stokes regime and 

- + + D -  (29) 
3t p ~?z 2 

in the Burnett regime for the one-dimensional case. The latter equation can 
be written as 

c3na ,, ~?nA O2nA (30) 
~ - -  Y*tZ--~-Z + D* 3Z 2 

which is a diffusion-type equation, but with y* and D* no longer satisfying 
the Einstein-Townsend relation. 
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5. DISCUSSION 

Since up to first order in the CE expansion we have obtained the 
Einstein-Townsend relation and the continuity equation used in the 
experiments (for low fields), the identification made between the 
experimental quantities (pressure and temperature) and their theoretical 
counterparts for low fields gains support. 

In the Burnett regime and for the one-dimensional case, one can 
obtain the diffusion-type Eq. (25) with new transport coefficients y* and 
D*. They are expressed in terms of some integrals but are also proportional 
to the divergence of the mass velocity, which is a measure of the com- 
pressibility of the binary mixture. In order to evaluate them, one must 
know V'6o.  In principle V'6o can be determined from the conservation 
equations by imposing certain boundary or initial conditions to 6o. The dif- 
fusion-type equation for nA [-Eq. (30)] has been solved using certain boun- 
dary conditions for hA, casting some light on the above problem [2].  

The above conclusions are a direct consequence of the relation 
V(V.60)=0 .  Since the relation is obtained by a purely mathematical 
argument, one may ask if this is a physically acceptable condition. If not, 
then either it is not possible to interchange the order of derivation in 
(Do/Dt)V or Do/Dt does not satisfy the rules of differential calculus. In 
either case, the conclusion will be that the method is incomplete, since in 
this situation there is no way to evaluate quantities such as 
(Do/Dt)[V(nA/n) ]. 

If V. 60 = 0, then the mobility and the diffusion coefficient are the same 
in the Burnett and Navier-Stokes regimes. However, from the conservation 
equation for the total mass (Dp/Dt) + pV" 60 = 0, when the total density is 
a constant, one is led to 

~n A 
(mA -- mB) - ~  + (mA -- mB) J0 ' VnA = 0 

which shows that there are no diffusion terms in the equation for nA, even 
if one takes the first-order expressions for Co, since the terms proportional 
to D are nonlinear in hA. 

The integrals mentioned in Section 3 can be divided into drift 
(wl, w2, w3, 61, 62, 63) and collision (71,72) integrals, all susceptible to 
evaluation for a potential proportional to r - (v-  a). For  the Maxwell model 
the contribution to the mobility arising from the collisions (71,72) is 
proportinal to (mB/mA) m SO that it may dominate over the drift terms. 
Note, however, that if the distribution function of the gas molecules is 
taken as a Maxwellian [fB(~)= 0], then their contribution is zero. 
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For the Navier Stokes regime the results are valid no matter what the 
mass ratios are. However, since in the Burnett regime we have used the 
Lorentz approximation, the results are valid for light ions in a heavy gas. 
Furthermore, since we have considered elastic collisions, the results can 
also be applied to ions in monoatomic gases. In this way the Burnett 
predictions of the Chapman-Enskog method may be compared with 
measurements obtained from electrons in a monoatomic gas. 

APPENDIX A 

Let us now show that the condition V(V' Co) = 0, when n is a constant, 
is a necessary condition for the Chapman-Enskog method to be 
mathematically consistent. The action of Do/Dt on the densities is given by 

[13 

Doni Ooni 
Dt ~?t 

k6o 'Vn i=  - n i V ' d 0  (31) 

From Eq. (30) we obtain, after adding the equations for each species, 

Do 
- -  n = - n V "  6 o  ( 3 2 )  
Dt 

If we assume that we can interchange the order of derivation to 
evaluate (Oo/~t)[V(nA/n)] and noting that (Do/Dt)(nA/n)= 0, we get 

oo ] 
Dt [V(nA/n)] = V  (nA/n) -V6o'V(nA/n) (33) 

On the other hand, when n is held constant we have V(nA/n)= 
(I/n) VnA. Hence 

D t  EV(/'/A//'/) "] / ) t \ n  ,/ -t- n V ~ nA 

_ nA V(V" 6o)-V6o" V(nA/n) (34) 
n 

By comparing Eq. (33) and Eq. (34) we conclude that V (V -6 0 )=0  when n 
is a constant. 
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A P P E N D I X  B 

To show how we obtained Eq. (19) we sketch the evaluation of the 
collision term which appears in this equation. From Eqs. (18) and (19) it 
turns out that the ith component of J is given by 

j,2,y ' I'IB [ 2or ( m B ~3/2] 
• / 

where a is the viscosity of the gas. To obtain this equation we took the 
first Enskog approximation for fB(1) and used the relations 
y (Ck - CA)b db de = t~ "~(') ~' = "~A"F12, g =  ICAI, and CB CB. 

J may be written as 

2a(mA ~3/2{ rnB ~3/2 n] 

x [ f  DACACa exp(--e2)IZVddA]'(dAV~ 

where # = ~  ddB ~BCgB and the dot product is defined as (T. T 1 ) i  = 

Tu2yTj2y when T is a fourth-order tensor and r I a third-order tensor. 
Using the fact that if w = ~ dda f ( C  2) CA CA, then w = (2~/3) [~  d I CA[ 
C 4f (C2) ] ( f f+  jj+ 2/~/~), we conclude that 

2 a (  ma )3/2( ms )3/271~2jv/2 W+ 

where W + = ( f f + ] j +  2/~/~) and 71 and ~)2 are given by 

fo m (.~12~ 1/2 3/2 
CA72 ICAI-- 16 ~/-~ \m-----~/ Aa(5 ) 

72 = -4 ,exp( c~)d  3 1 2k (2k_T~ 1 

The last value of 72 is for the Maxwell model. The other integrals which 
appear in the paper are given, for the Maxwell model, by 

9 kT  1 3 kT  1 
wi = 32 K12 rc3A~(5) ' w2 = 16 K12 7~3A 12(5) 
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1 m A 1 
61 = 6 4 = 5  - -  

W3 -- 8 K12 7~3A1(5) A2(5) ' 
k T  1 

K~2 A1(5) A2(5) 

6 2 :  l mA 1 63= 3 k T  1 
8 K~2 rc3A~(5) A2(5) ' 16 Ka2 ~3A~(5) 

where A1(5)=0.422 and A2(5)=0.436. The interaction potential for the 
ions and the gas is given for the Maxwell model by ~bAB(f)= Ka2/4r 4. 
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